The following result is due independently to Furstenberg and to Sarkozy:
Theorem 1 (Furstenberg-Sarkozy theorem) Let , and suppose that is sufficiently large depending on . Then every subset of of density at least contains a pair for some natural numbers with .
This theorem is of course similar in spirit to results such as Roth’s theorem or Szemerédi’s theorem, in which the pattern is replaced by or for some fixed respectively. There are by now many proofs of this theorem (see this recent paper of Lyall for a survey), but most proofs involve some form of Fourier analysis (or spectral theory). This may be compared with the standard proof of Roth’s theorem, which combines some Fourier analysis with what is now known as the density increment argument.
A few years ago, Ben Green, Tamar Ziegler, and myself observed that it is possible to prove the Furstenberg-Sarkozy theorem by just using the Cauchy-Schwarz inequality (or van der Corput lemma) and the density increment argument, removing all invocations of Fourier analysis, and instead relying on Cauchy-Schwarz to linearise the quadratic shift . As such, this theorem can be considered as even more elementary than Roth’s theorem (and its proof can be viewed as a toy model for the proof of Roth’s theorem). We ended up not doing too much with this observation, so decided to share it here.
The first step is to use the density increment argument that goes back to Roth. For any , let denote the assertion that for sufficiently large, all sets of density at least contain a pair with non-zero. Note that is vacuously true for . We will show that for any , one has the implication
for some absolute constant . This implies that is true for any (as can be seen by considering the infimum of all for which holds), which gives Theorem 1.
It remains to establish the implication (1). Suppose for sake of contradiction that we can find for which holds (for some sufficiently small absolute constant ), but fails. Thus, we can find arbitrarily large , and subsets of of density at least , such that contains no patterns of the form with non-zero. In particular, we have
(The exact ranges of and are not too important here, and could be replaced by various other small powers of if desired.)
Let be the density of , so that . Observe that
and
If we thus set , then
In particular, for large enough,
and hence by the Cauchy-Schwarz inequality
which we can rearrange as
Shifting by we obtain (again for large enough)
In particular, by the pigeonhole principle (and deleting the diagonal case , which we can do for large enough) we can find distinct such that
so in particular
If we set and shift by , we can simplify this as
On the other hand, since
we have
for any , and thus
Averaging this with (2) we conclude that
In particular, by the pigeonhole principle we can find such that
or equivalently has density at least on the arithmetic progression , which has length and spacing , for some absolute constant . By partitioning this progression into subprogressions of spacing and length (plus an error set of size , we see from the pigeonhole principle that we can find a progression of length and spacing on which has density at least (and hence at least ) for some absolute constant . If we then apply the induction hypothesis to the set
we conclude (for large enough) that contains a pair for some natural numbers with non-zero. This implies that lie in , a contradiction, establishing the implication (1).
A more careful analysis of the above argument reveals a more quantitative version of Theorem 1: for (say), any subset of of density at least for some sufficiently large absolute constant contains a pair with non-zero. This is not the best bound known; a (difficult) result of Pintz, Steiger, and Szemeredi allows the density to be as low as . On the other hand, this already improves on the (simpler) Fourier-analytic argument of Green that works for densities at least .
Remark 1 A similar argument also applies with replaced by for fixed , because this sort of pattern is preserved by affine dilations into arithmetic progressions whose spacing is a power. By re-introducing Fourier analysis, one can also perform an argument of this type for ; see the above-mentioned paper of Green for details. However there seems to be some technical difficulty in extending it to patterns of the form for polynomials that consist of more than a single monomial (and with the normalisation , to avoid local obstructions), because one no longer has this preservation property.
Filed under: expository, math.CO Tagged: Cauchy-Schwarz, density increment argument, Furstenberg-Sarkozy theorem, van der Corput lemma
DIGITAL JUICE
No comments:
Post a Comment
Thank's!